GO g|e ibzio — 2023 Source

Code Review & Fuzzing

FINAL REPORT

< leviathan

limitless innovation. no compromise.

Prepared for: Dave Tamasi
Security TPM - Engineering

OSTIF

Thomas Klausner

LibZip package maintainer
October 23, 2023

PO#: 4100346637

Testing Dates: 08/23/23 - 10/19/23
Actual Person Days: 9.5 days / 1FTE

© 2023 Leviathan Security Group Incorporated.

All Rights Reserved. Disclaimer

This document contains information, which is No trademark, copyright, or patent licenses are
protected by copyright and pre-existing non- expressly or implicitly granted (herein) with this
disclosure agreement between Leviathan analysis, report, or white paper.

Security and the company identified as

"Prepared For” on the title page. All brand names and product names used in this

document are trademarks, registered

No part of this document may be photocopied, trademarks, or trade names of their respective
reproduced, or translated to another language holders. Leviathan Security Group is not
without the prior written and documented associated with any other vendors or products
consent of Leviathan Security Group or the mentioned in this document.

company identified as “Prepared For” on the title

page.
Version: Final
Prepared for: Google LLC
Date: October 23, 2023

Confidentiality Notice

This document contains information confidential and proprietary to Leviathan Security Group and Google
LLC. The information may not be used, disclosed, or reproduced without the prior written authorization of
either party and those so authorized may only use the information for the purpose of evaluation
consistent with authorization. Reproduction of any section of this document must include this notice.

Table of Contents

Executive Summary

Observations
RECOMMENUATIONS ...ttt sttt et s et ass s s st s e s s ssassassassaseas 6
VUINEIaDIility ClasSIfICAtION ...ttt sttt 7

Vulnerability Index
Activity Index

ODSEIVALIONS BL ANGIYSIS ...ourireiereiiineeeirereise it e saisse et s st bbbttt
Source code

Threat Analysis

Observations

ACHVITIES PEITOIME ..ottt sttt 11

VUINEIADITITIES oottt et ek et 12
APPENIX A = TECNNICAI SEIVICES ..ottt sttt sttt sttt s s 14
Appendix B — RISk @aNd AQVISOIY SEIVICES ...ttt sese st sttt st st sssss st s sss s s sssssseses 15

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 3

Executive Summary

Google LLC engaged Leviathan Security Group to perform a time-bound security assessment of the
libzip library. We performed this assessment from August 23, 2023 through October 19, 2023.

Our objectives were to review the 1ibzip source code and increase the fuzzing coverage for the project
in 0SS-Fuzz. The source code review was performed both manually and using automated source code
scanning methods. The work was informed and guided through threat modeling documentation.

Our review uncovered no vulnerability findings.

Observations

The time-bound source code evaluation focused on discovering vulnerabilities in the 1ibzip
(https://github.com/nih-at/libzip) project using manual review and static application security testing tools
(SAST). Manual code review was focused on important security controls such as general input validation,
cryptographic protocols, and proper memory management. The SAST analysis was centered around a
holistic examination of the library.

The library uses up-to-date third-party dependencies. The compression and decompression mechanisms
of zip archives were found to work correctly and mitigate many attack vectors.

Overall, the library follows best security practices. It properly validates input data, such as filesystem path
or passwords for encrypted files. The implementation is not prone to memory leaks and corruptions.
Although the insecure memory filling function memset () was noted in several instances, it does not pose
any direct threats. No buffer overflow primitives were observed during the evaluation.

The main areas of focus were:

e Memory management

e Crypto primitives implementation

e Compression and decompression design
e Files handling flow

e Error handling flow

The reviewed functionality includes:

e zip archives handling (1ib/zip_open.c; 1lib/zip_source_file_win32.c)

e compression and decompression of zip archives (1ib/zip_algorithm_bzip2.c;
lib/zip_algorithm_deflate.c; lib/zip_algorithm_xz.c; 1lib/zip_algorithm_zstd.c)

o files & buffers handling (1ib/zip_file_add.c; 1ib/zip_file_replace.c;
lib/zip_source_buffer.c; 1lib/zip_source_open.c; lib/zip_buffer.c)

e implementation of cryptographic functions (zip_source_pkware_decode.c;
zip_source_pkware_encode.c; 1ib/zip_source_winzip_aes_decode.c;
lib/zip_source_winzip_aes_encode.c; 1lib/zip_crypto_commoncrypto.c;
lib/zip_crypto_win.c; lib/zip_get_encryption_implementation.c)

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 4

e usage of potentially unsafe functions, insecure RNGs, deprecated cryptography APIs (1ib/*)

As part of the assessment, we also enhanced fuzzing coverage. Fuzzing was dedicated to finding bugs,
memory leaks, and security vulnerabilities in the 1ibzip library. While developing the new fuzz targets,
we focused on library encryption and decryption algorithms (AES and PKWARE) as well as archive
handling functions (zip_open(); zip_open_from_source()). Each fuzz target covers a specific
functionality and contains comments on it. 4 new fuzz targets and 1 new corpus were developed as a
result of expanding the fuzz testing coverage.

The fuzzing function coverage increased from 56.9% to 84.33% after running 21 days on the 0SS-Fuzz
infrastructure. The expanded fuzzing coverage has yielded several crashes that have been communicated
to us by the repository maintainers:

e A memory leak in error handling (1ib/zip_source_zip_new.c) detected by ASAN
(AddressSanitizer) has been confirmed as an issue and fixed by the 1ibzip developers (commit
479c7afa6318e5d6b16915381b176863a906b4d0); The origin of the issue is a function
zip_source_zip_file_create() inthe 1lib/zip_source_zip_new.c file, which posed a lack
of freeing zip data source after setting an error;

e 2 out-of-memory crashes in the xz library used by 1ibzip as a (de)compression back end. After
review, these crashes were determined to be false positives. The reason for these 2 crashes is that
ASAN has a default memory limit of 2560 MB, while the 1zma function (from xz) attempts to
allocate more than 4GB of memory.

Fuzzing Process and Challenges Overview

We submitted several pull requests (PRs) to improve fuzzing coverage and reached out to the repository
maintainers for feedback. There was a week-long wait before we received information on the changes
required for our PR to be accepted. After making the adjustments promptly, our PR was approved.

However, a few hours after approval, the maintainers made commits that altered the 0SS-Fuzz setup and
fuzzer targets. Unfortunately, on the third day, the project was removed from the 0SS-Fuzz platform,
halting the fuzzing process. This removal was due to the new fuzz targets being broken by the recent
commits. In response, we identified and communicated the issue to the developers, providing suggestions
for resolution. The maintainers acted on this feedback, fixing the problem within 2 days.

Following this, we encountered another challenge related to coverage report generation on the 0SS-Fuzz
side. We reported this issue in the 0SS-Fuzz repository. The Google team acknowledged this was not a
false alarm, but a genuine infrastructure problem, which was resolved in 3 days without any action on our
part.

After the infrastructure issue was resolved, we observed that the maintainers had made further changes to
the setup, disrupting the configuration as indicated by the 0SS-Fuzz logs. This required us to conduct an
additional investigation and make the necessary adjustments to the setup. Once these corrections were
made, the fuzzer targets could operate, and coverage reports were successfully generated. This issue was
resolved within a day after discussions with the maintainers.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 5

Overall Feedback:

The process involved a 2-week wait due to issues originating from external parties. In addition, as we do
not have access to the 0SS-Fuzz platform reports, it creates additional barrier in tracking the results of
fuzzing coverage expansion. According to provided crashes, the 1ibzip developers received and
successfully addressed memory leaks in areas covered by the new fuzzers (commit
479c7afa6318e5d6b16915381b176863a906b4d0). This suggests that the expanded fuzzing coverage
aided in identifying new bugs.

Recommendations

Analyze all crashes reported by 0SS-Fuzz and fix all sequentially identified bugs and vulnerabilities.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION

Vulnerability Classification

Impact

When we find a vulnerability, we assign it one of five categories of severity,
describing the potential impact if an attacker were to exploit it:

Informational — Does not present a current threat but could pose one in the
future if certain changes are made. To protect against future vulnerabilities,
fixing the condition is advisable.

Low — May allow an attacker to gain information that could be combined with
other vulnerabilities to carry out further attacks. May allow an attacker to
bypass auditing or minimally disrupt availability, resulting in minor damage to
reputation or financial loss.

Medium — May allow an attacker inappropriate access to business assets such as
systems or servers. There may be impact to the confidentiality or integrity of
data, or limited disruption of availability, resulting in moderate damage to
reputation or financial loss.

High — May allow an attacker inappropriate access to business assets such as
systems or servers. There may be substantial or widespread impact to the
confidentiality or integrity of particularly sensitive data, or disruption of
availability, resulting in significant damage to reputation or financial loss.

Critical — May allow an attacker to gain persistence, or imminently disrupt
functionality or disclose data, resulting in severe reputational damage or
financial loss.

Skill Level to Exploit

Impact Rating

(Weight)

Critical (4)
High (3)
Medium (2)
Low (1)

When we find a vulnerability, we assess how skilled an attacker must be to
exploit it:

Simple — Requires minimal understanding of the underlying technology. Tools/
techniques for exploiting the vulnerability can be easily found on the internet.

Moderate — Requires significant expertise, possibly in proprietary information,
or access to tools that are not readily available to individuals. The unwitting
cooperation of a victim or target may also be required.

Advanced — Requires insider access or access to tools that are not publicly
available. Successful exploitation of another vulnerability may be required.
Direct interaction with the victim or target may also be required.

Skill Level to Exploit Rating (Weight) Severity
4 Critical

High
6 Medium 4-6

Advanced (1) Moderate (2) Simple (3)

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 7

Vulnerability Index

This section represents a quick view into the vulnerabilities discovered in this assessment.

ID SEVERITY TITLE COMPONENT

2112430 Info Insecure "memset" function in use Source code

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION

Activity Index

This section represents a quick view into the activities performed in this assessment.

COMPONENT TITLE STATUS
Source code Coding best practice Complete
Source code Insecure functions Complete

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION

Observations & Analysis

For the purposes of evaluation, we grouped all aspects of this assessment into a single component, based
on design documentation and discussions with the product team.

Source code

libzip is an open-source C language library for reading, creating, and modifying zip and zip64 archives.
Files on a stage of compressing can be added from data buffers, files, or compressed data copied directly
from other zip archives. Decryption and encryption of files encrypted with Winzip AES and legacy PKware
is supported.

Threat Analysis

1libzip could be vulnerable to common types of attacks such as buffer overflow, memory corruption, or
failure of cryptographic primitives. Exploitation of the library could lead to information disclosure or denial
of service (DoS). If exploited, these vulnerabilities could allow attackers to compromise the confidentiality
and availability of client applications that use the library.

Observations

libzip follows security best practices and properly validates user input and handles errors. The library is
protected from memory corruption.

However, we detected the use of an insecure function to fill memory chunks, which could lead to
information disclosure, though this security issue does not pose any direct threats and is not exploitable.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 10

Activities Performed
CODING BEST PRACTICE

Scope
Verify that coding best practices are being followed.

Methodology

Ensure that every return value is validated and memory is properly cleared when necessary. Verify that
file descriptors, and the like, are used rather than file-name operations. Verify that preprocessor macros,
and the like, are used in a safe manner. Buffer overflow primitives and format string vulnerabilities
should not be present. Ensure that all pointer variables are properly initialized to NULL or a valid
memory address before use to prevent undefined behavior.

Observations
This activity took 5 hours to complete. We observed that all data is properly sanitized and memory is
properly cleared after memory allocation and usage. We did not detect any buffer overflow primitives.

Related Findings
No findings are associated with this activity.

INSECURE FUNCTIONS

Scope
Review code to see if insecure functions are being used.

Methodology

Review manually and through static application security testing with the semgrep tool. Review the code
for potentially insecure functions, such as strcpy, malloc, and printf, and determine whether they
are used in an insecure manner.

Our work included the following checks:

e Compiler safe memset in use
e Width of memory is defined for file reading

Observations
This activity took 6 hours to complete. We observed that the application relies on security best practices
regarding the use of insecure functions.

However, we found that the application uses the insecure function memset () to fill memory chunks
instead of the secure version memset_s().

Related Findings
2112430: Insecure "memset" function in use

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 11

Vulnerabilities
INSECURE "MEMSET" FUNCTION IN USE

ID | 2112430
Component | Source code
Severity | Info
Impact / Skill Level | Informational/Advanced
Reference | https://cwe.mitre.org/data/definitions/244.html
https://stackoverflow.com/questions/246127/why-is-volatile-needed-in-c
Location | lib/
CVSS Score | 0
(CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N/E:X/RLX/RC:X/CR:X/IR:X/AR:X/M
AV:X/MAC:X/MPR:X/MUI:X/MS:X/MC:X/MI:X/MA:X)
CWE Category | CWE-14: Compiler Removal of Code to Clear Buffers

Observation

Optimizing compilers may optimize away code that writes to memory that is not subsequently read by
the program. This can cause vulnerabilities in applications that try to erase sensitive data (e.g.,
passwords or private keys) by overwriting it.

While performing static application security testing (semgrep version 1.21.0 was used), we checked for
common insecure functions in the library. We observed that the 1ibzip library relies on an insecure
function to fill memory chunks. While the memset () function is often used to clear data from buffers
prior to deletion or reuse, compiler optimization or other factors may cause it to leave sensitive
information intact.

libzip uses the memset function to initialize structures but does not use it to overwrite structures with
null values. Consequently, this issue does not pose a direct threat and is not exploitable.

Source code files containing insecure functions:

- lib/zip_algorithm_xz.c

- lib/zip_crypto_openssl.c
- lib/zip_crypto_win.c

- lib/zip_dirent.c

- lib/zip_winzip_aes.c

Impact Rationale:
An attacker could exploit improper handling of sensitive information in the buffer to gain unauthorized
access to critical data.

Difficulty Rationale:
An attacker would need to exploit an insecure function.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 12

INSECURE "MEMSET" FUNCTION IN USE

Recommendation

Ensure that memory buffers containing sensitive information such as passwords and encryption keys
are zeroed prior to freeing the buffer. To ensure that sensitive data is securely overwritten, it is best to
use system-provided secure-erase functions such as memset_s. If such functions are not available, then
the data to be erased must be marked “volatile” when it is declared.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 13

Appendix A — Technical Services

Leviathan's Technical Services group brings deep technical knowledge to your security needs. Our portfolio of services
includes software and hardware evaluation, penetration testing, red team testing, incident response, and reverse
engineering. Our goal is to provide your organization with the security expertise necessary to realize your goals.

SOFTWARE EVALUATION We provide assessments of application, system, and mobile code, drawing on our
employees' decades of experience in developing and securing a wide variety of software. Our work includes design
and architecture reviews, data flow and threat modeling, and code analysis using targeted fuzzing to find exploitable
issues.

HARDWARE EVALUATION We evaluate new hardware devices ranging from novel microprocessor designs,
embedded systems, mobile devices, and consumer-facing end products, to core networking equipment that powers
internet backbones.

PENETRATION & RED TEAM TESTING We perform high-end penetration tests that mimic the work of sophisticated
attackers. We follow a formal penetration testing methodology that emphasizes repeatable, actionable results that
give your team an understanding of the overall security posture of your organization as well as the details of
discovered vulnerabilities.

SOURCE CODE-ASSISTED SECURITY EVALUATIONS We conduct security evaluations and penetration tests based
on our code-assisted methodology, allowing us to find deeper vulnerabilities, logic flaws, and fuzzing targets than a
black-box test would reveal. This methodology gives your team a stronger assurance that the most significant
security-impacting flaws have been found, allowing your team to address them.

INCIDENT RESPONSE & FORENSICS We respond to our customers’ security incidents by providing forensics,
malware analysis, root cause analysis, and recommendations for how to prevent similar incidents in the future.

REVERSE ENGINEERING We assist clients with reverse engineering efforts. We provide expertise in investigations and
litigation by acting as experts in cases of suspected intellectual property theft.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 14

Appendix B — Risk and Advisory Services

Leviathan's Retained Services group is a supplement to an organization's security and risk management capability. We
offer a pragmatic information security approach that respects our clients' appetites for security process and program
work. We provide access to industry leading experts with a broad set of security and risk management skills, which
gives our clients the ability to have deep technical knowledge, security leadership, and incident response capabilities
when they are needed.

INFORMATION SECURITY STRATEGY DEVELOPMENT We partner with boards, directors, and senior executives to
shape your enterprise's overall approach to meeting information security requirements consistently across an entire
organization.

ENTERPRISE RISK ASSESSMENT We develop an information asset-centric view of an organization’s risk that
provides insight to your organization's Enterprise Risk Management capability. This service can be leveraged with
annual updates, to account for your organization's changing operations, needs, and priorities.

PRIVACY & SECURITY PROGRAM EVALUATION We evaluate your organization's existing security program to give
you information on compliance with external standards, such as ISO 27000 series, NIST CSF, HIPAA, or PCI-DSS. This is
often most useful before a compliance event or audit and helps to drive the next phase of growth for your Security
and Risk Management programs.

VENDOR RISK ASSESSMENT We assess the risk that prospective vendors bring to your organization. Our assessment
framework is compatible with legislative, regulatory, and industry requirements, and helps you to make informed
decisions about which vendors to hire, and when to reassess them to ensure your ongoing supply chain security.

NATIONAL & INTERNATIONAL SECURITY POLICY In 2014, we launched a public policy research and analysis
service that examines the business implications of privacy and security laws and regulations worldwide. We provide an
independent view of macro-scale issues related to the impact of globalization on information assets.

M&A/INVESTMENT SECURITY DUE DILIGENCE We evaluate the cybersecurity risk associated with a prospective
investment or acquisition and find critical security issues before they derail a deal.

LAW FIRM SECURITY SERVICES We work with law firms as advisors, to address security incidents and proactively
work to protect client confidences, defend privileged information, and ensure that conflicts do not compromise client
positions. We also work in partnership with law firms to respond to their clients' security needs, including in the role
of office and testifying expert witnesses.

SAAS AND CLOUD INITIATIVE EVALUATION We give objective reviews of the realistic threats your organization
faces both by moving to cloud solutions and by using non-cloud infrastructure. Our employees have written or
contributed to many of the major industry standards around cloud security, which allows their expertise to inform
your decision-making processes.

CONFIDENTIAL INFORMATION / LIMIT DISTRIBUTION 15

